Expression Vs-vergelijking
Al op de lagere school worden kinderen vertrouwd gemaakt met enkele basisbegrippen in de wiskunde. Tot aan de middelbare en collegiale jaren worden deze concepten nog steeds op school gebruikt, vooral in de praktische toepassing van grotere en meer complexe wiskundige concepten. Studenten zijn echter geneigd bepaalde fundamentele termen zoals uitdrukkingen en vergelijkingen die zij al de neiging hebben om ten onrechte van elkaar te onderscheiden, te vergeten en niet te internaliseren..
Het is eigenlijk vrij simpel. Als je goed lette op je leraar op de lagere school, zou je het geluk kunnen hebben om het verschil te weten tussen uitdrukkingen en vergelijkingen. Een uitdrukking is in feite een onvolledige wiskundige zin. Het is als elke normale zin in de Engelse taal. In vergelijking met uitdrukkingen zijn vergelijkingen completer. Ze zijn homoloog aan wat volledig gestructureerde Engelse zinnen zijn. Ze hebben meestal een onderwerp, een werkwoord en een predikaat. Dit zijn de meest voorkomende verklaringen in wiskunde die elke leerling zal leren kennen.
In dit opzicht zijn vergelijkingen completer omdat ze relaties hebben. Ze worden 'vergelijkingen' genoemd omdat ze gelijkheid tonen. Deze gelijkheid wordt afgebeeld met het gebruik van het gelijk '=' teken. Andere tekens, zoals groter dan of kleiner dan, kunnen een uitdrukking of een vergelijking zijn, maar de bepalende factor is duidelijk de aanwezigheid van het gelijkteken.
Wiskundige uitspraken met gelijkheid zijn vergelijkingen. Als u bijvoorbeeld x + 10 = 15 zegt, is dit een vergelijking omdat deze één type relatie laat zien. Omgekeerd tonen uitdrukkingen geen enkele vorm van relatie. Dus, als je problemen hebt om te zien of een bepaalde wiskundige verklaring een uitdrukking of een vergelijking is, kijk dan gewoon naar het gelijkteken en je zult zeker niet verkeerd zijn om te identificeren welke is wat.
Ook, wanneer een leerling een vergelijking tegenkomt, wordt van hem of haar verwacht dat hij die vergelijking oplost. Aan de andere kant kunnen uitdrukkingen niet worden opgelost, omdat je in de eerste plaats niet weet welk verband elke variabele of constante heeft met elkaar. Vandaar dat uitdrukkingen alleen kunnen worden vereenvoudigd.
Omdat het een gelijk teken is, toont een vergelijking meestal een oplossing of moet hij zijn oplossing onthullen. Expressies zijn duidelijk anders omdat ze geen duidelijke of definitieve oplossing voor het probleem hebben.
Op te sommen:
1. Expressies zijn onvolledige wiskundige zinnen, terwijl vergelijkingen complete wiskundige uitspraken zijn.
2. Expressies zijn als de typische Engelse uitdrukking, terwijl vergelijkingen complete zinnen zijn.
3. Uitgaven tonen relaties, terwijl uitdrukkingen dit niet laten zien.
4. Uitwisselingen hebben een gelijkteken terwijl uitdrukkingen er geen hebben.
5. De eisen moeten worden opgelost, terwijl uitdrukkingen moeten worden vereenvoudigd.
6. Verzoeken hebben een oplossing, terwijl uitdrukkingen er geen hebben.